`
leonzhx
  • 浏览: 766653 次
  • 性别: Icon_minigender_1
  • 来自: 上海
社区版块
存档分类
最新评论
阅读更多

1.  Problem Definition:

Given an edge-weighted digraph, find the shortest path from s to t.

 

2.  Different Vertices:

    --  Source-sink: from one vertex to another.

    --  Single source: from one vertex to every other.

    --  All pairs: between all pairs of vertices.

 

3.  Weighted directed edge: implementation in Java

 

public class DirectedEdge
{
    private final int v, w;
    private final double weight;
    
    public DirectedEdge(int v, int w, double weight)
    {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

    public int from()
    { return v; }

    public int to()
    { return w; }

    public int weight()
    { return weight; }

    String toString()
    { return v + "->" + w; }
}

 

 

4.  Edge-weighted digraph: adjacency-lists implementation in Java

 

public class EdgeWeightedDigraph
{
    private final int V;
    private final Bag<Edge>[] adj;
    
    public EdgeWeightedDigraph(int V)
    {
        this.V = V;
        adj = (Bag<DirectedEdge>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<DirectedEdge>();
    }

    public void addEdge(DirectedEdge e)
    {
        int v = e.from();
        adj[v].add(e);
    }

    public Iterable<DirectedEdge> adj(int v)
    { return adj[v]; }

}

 

 

5.  Single-source shortest paths API

 

public class SP {
    SP(EdgeWeightedDigraph G, int s) {} //shortest paths from s in graph G
    double distTo(int v) {} //length of shortest path from s to v
    Iterable <DirectedEdge> {} //pathTo(int v) shortest path from s to v
    boolean hasPathTo(int v) {} //is there a path from s to v?
}

 

 

6.  Data structures for single-source shortest paths: Can represent the SPT with two vertex-indexed arrays:

    --  distTo[v] is length of shortest path from s to v.

    --  edgeTo[v] is last edge on shortest path from s to v.

 

7.  Relax edge e = v→w.

    --  distTo[v] is length of shortest known path from s to v.

    --  distTo[w] is length of shortest known path from s to w.

    --  edgeTo[w] is last edge on shortest known path from s to w.

    --  If e = v→w gives shorter path to w through v, update both distTo[w] and edgeTo[w].

 

8.  Shortest-paths optimality conditions:

    distTo[] are the shortest path distances from s iff -->

    --  For each vertex v, distTo[v] is the length of some path from s to v.

    --  For each edge e = v→w, distTo[w] ≤ distTo[v] + e.weight().

    Pf.  ==> [necessary]

    --  Suppose that distTo[w] > distTo[v] + e.weight() for some edge e = v→w.

    --  Then, e gives a path from s to w (through v) of length less than distTo[w].

    Pf. <== [sufficient]

    --  Suppose that s = v0 → v1 → v2 → … → vk = w is a shortest path from s to w.

    --  Then, distTo[w] = distTo[vk] ≤ distTo[vk-1] + ek.weight() ≤ distTo[vk-2] + ek-1.weight() + ek.weight()  

                                                                 ≤ e1.weight() + e2.weight() + ... + ek.weight()  (weight of shortest path)

    --  Thus, distTo[w] is the weight of shortest path to w.

 

9.  Generic shortest-paths algorithm: 

    --  Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

    --  Repeat until optimality conditions are satisfied:

        --  Relax any edge.

    Pf. of correctness

    --  Throughout algorithm, distTo[v] is the length of a simple path from s to v (and edgeTo[v] is last edge on path).

    --  Each successful relaxation decreases distTo[v] for some v.

    --  The entry distTo[v] can decrease at most a finite number of times.

    How to choose which edge to relax?

    --  Dijkstra's algorithm (nonnegative weights).

    --  Topological sort algorithm (no directed cycles).

    --  Bellman-Ford algorithm (no negative cycles).

 

10.  Dijkstra's algorithm:

    --  Consider vertices in increasing order of distance from s

        (non-tree vertex with the lowest distTo[] value).

    --  Add vertex to tree and relax all edges pointing from that vertex.

    Java implementation:

   

public class DijkstraSP
{
    private DirectedEdge[] edgeTo;
    private double[] distTo;
    private IndexMinPQ<Double> pq;
   
    public DijkstraSP(EdgeWeightedDigraph G, int s)
    {
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];
        pq = new IndexMinPQ<Double>(G.V());
        for (int v = 0; v < G.V(); v++)
                distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;
        pq.insert(s, 0.0);
        while (!pq.isEmpty())
        {
            int v = pq.delMin();
            for (DirectedEdge e : G.adj(v))
                relax(e);
        }
    }

    private void relax(DirectedEdge e)
    {
        int v = e.from(), w = e.to();
        if (distTo[w] > distTo[v] + e.weight())
        {
            distTo[w] = distTo[v] + e.weight();
            edgeTo[w] = e;
            if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
            else pq.insert (w, distTo[w]);
        }
    }
}

 

    Running Time:



 

11.  Main distinction between Dijkstra's and Prims algorithm : Rule used to choose next vertex for the tree:

    --  Prim’s: Closest vertex to the tree (via an undirected edge).

    --  Dijkstra’s: Closest vertex to the source (via a directed path).

 

12.  Shortest paths in edge-weighted DAGs:

    --  Consider vertices in topological order.

    --  Relax all edges pointing from that vertex.

    Java Implementation:

    

public class AcyclicSP
{
    private DirectedEdge[] edgeTo;
    private double[] distTo;
    public AcyclicSP(EdgeWeightedDigraph G, int s)
    {
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];
        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;
        Topological topological = new Topological(G);
        for (int v : topological.order())
            for (DirectedEdge e : G.adj(v))
                relax(e);
    }
}

 

13.  Longest paths in edge-weighted DAGs:

    --  Negate all weights.

    --  Find shortest paths.

    --  Negate weights in result.

    Application: Parallel job scheduling. Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time, while respecting the constraints.



    Solution: Critical path method -- create edge-weighted DAG:

    --  Source and sink vertices.

    --  Two vertices (begin and end) for each job.

    --  Three edges for each job.

        – begin to end (weighted by duration)

        – source to begin (0 weight)

        – end to sink (0 weight)

    --  One edge for each precedence constraint (0 weight).

    --  Use longest path from the source to schedule each job.



 

14.  Bellman-Ford algorithm

    --  Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

    --  Repeat V times:

        -  Relax each edge.

for (int i = 0; i < G.V(); i++)
    for (int v = 0; v < G.V(); v++)
        for (DirectedEdge e : G.adj(v))
            relax(e);

    Optimization: If distTo[v] does not change during pass i, no need to relax any edge pointing from v in pass i+1.

    FIFO implementation: Maintain queue of vertices whose distTo[] changed. (Be careful to keep at most one copy of each vertex on queue.

    Running Time : 



   

    Finding a negative cycle : If any vertex v is updated in phase V, there exists a negative cycle (and can trace back edgeTo[v] entries to find it).

 

15.  Negative cycle application: arbitrage detection:

    Given table of exchange rates, is there an arbitrage opportunity?



 

    Currency exchange graph:

    --  Vertex = currency.

    --  Edge = transaction, with weight equal to exchange rate.

    --  Find a directed cycle whose product of edge weights is > 1.

 

    Model as a negative cycle detection problem by taking logs.

    --  Let weight of edge v→w be - ln (exchange rate from currency v to w).

    --  Multiplication turns to addition; > 1 turns to < 0.

    --  Find a directed cycle whose sum of edge weights is < 0 (negative cycle).



 

16.  Shortest paths summary

    Dijkstra’s algorithm:

    --  Nearly linear-time when weights are nonnegative.

    --  Generalization encompasses DFS, BFS, and Prim.

 

    Acyclic edge-weighted digraphs:

    --  Arise in applications.

    --  Faster than Dijkstra’s algorithm.

    --  Negative weights are no problem.

 

    Negative weights and negative cycles:

    --  Arise in applications.

    --  If no negative cycles, can find shortest paths via Bellman-Ford.

    --  If negative cycles, can find one via Bellman-Ford.

 

  • 大小: 23.2 KB
  • 大小: 17.1 KB
  • 大小: 30.4 KB
  • 大小: 24.6 KB
  • 大小: 34.6 KB
分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics